
NeuroImage 95 (2014) 80–89

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img
Distinct regions of anterior cingulate cortex signal prediction and
outcome evaluation
Andrew Jahn a, Derek Evan Nee b, William H. Alexander c, Joshua W. Brown a,⁎
a Dept. of Psychological and Brain Sciences, Indiana University, 1101 E Tenth St, Bloomington, IN 47405, USA
b Helen Wills Neuroscience Institute, University of California, 132 Barker Hall, Berkeley, CA 94720, USA
c Dept. of Experimental Psychology, Ghent University, Henri Dunantlaan 2, B-9000 Ghent, Belgium
⁎ Corresponding author at: Dept. of Psychological and B
Bloomington, IN 47405, USA.

E-mail address: jwmbrown@indiana.edu (J.W. Brown)

http://dx.doi.org/10.1016/j.neuroimage.2014.03.050
1053-8119/© 2014 Elsevier Inc. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Accepted 17 March 2014
Available online 22 March 2014

Keywords:
Anterior cingulate cortex
Cognitive control
Computational modeling
PRO model
A number of theories have been proposed to account for the role of anterior cingulate cortex (ACC) and the
broadermedial prefrontal cortex (mPFC) in cognition. The recent Prediction of ResponseOutcome (PRO) compu-
tational model casts the mPFC in part as performing two theoretically distinct functions: learning to predict the
various possible outcomes of actions, and then evaluating those predictions against the actual outcomes. Simu-
lations have shown that this new model can account for an unprecedented range of known mPFC effects, but
the central theory of distinct prediction and evaluation mechanisms within ACC remains untested. Using com-
bined computational neural modeling and fMRI, we show here that prediction and evaluation signals are indeed
each represented in the ACC, and furthermore, they are represented in distinct regions within ACC.
Our task independently manipulated both the number of predicted outcomes and the degree to which outcomes
violated expectancies, the former providing assessment of regions sensitive to prediction and the latter providing
assessment of regions sensitive to evaluation. Using quantitative regressors derived from the PRO computational
model, we show that prediction-based model signals load on a network including the posterior and perigenual
ACC, but outcome evaluation model signals load on the mid-dorsal ACC. These findings are consistent with dis-
tinct prediction and evaluation signals as posited by the PRO model and provide new perspective on a large set
of known effects within ACC.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Themedial prefrontal cortex (mPFC), and especially the anterior cin-
gulate cortex (ACC), is one of the most commonly identified regions of
activation across studies of cognition (Yarkoni et al., 2011). Numerous
models have attempted to describe the functions of the ACC, including
conflict monitoring (Botvinick et al., 2004; Carter et al., 1998) error like-
lihood (Brown and Braver, 2005, 2007), outcome unexpectedness
(Jessup et al., 2010; Oliveira et al., 2007), volatility (Behrens et al.,
2007), error monitoring (Holroyd and Coles, 2002; Steinhauser et al.,
2008) and simple time-on-task (Carp et al., 2010; Grinband et al.,
2011). While each of these theories has accounted for certain aspects
of ACC function, each fails to account for certain important phenomena.
As a result, there remains considerable current debate over exactlywhat
is computed within the mPFC (Brown, 2011; Cole et al., 2009; Yeung
and Nieuwenhuis, 2009).

We have recently proposed a model that accounts for an unprece-
dented range of effects observed in the mPFC: the predicted response
outcome (PRO) model (Alexander and Brown, 2011; see also Silvetti
rain Sciences, 1101 E Tenth St.,

.

et al., 2011). According to the PRO model (Fig. 1), the mPFC learns to
predict the outcomes of actions. Actual outcomes are then compared
against predicted outcomes, generating a discrepancy or surprise signal
that updates predictions. As a result, the PROmodel provides a unifying
account of prediction, error, and learning effects that have been local-
ized to themPFC (Alexander and Brown, 2011). Thismodel is consistent
with a number of studies arguing that mPFC represents action values
(Croxson et al., 2009; Gläscher et al., 2009; Hayden et al., 2011;
Kennerley et al., 2006) and is able to simulate the various effects de-
scribed above.

While the PRO model provides a compelling unified theory of ACC
function, its main proposal remains untested, namely whether distinct
prediction-related and outcome-related signals exist within the ACC. If
so, a related question is whether the distinct prediction and outcome
signals are found in overlapping regions of ACC, or whether they are
largely segregated within different subregions of ACC. The PRO model
predicts only that the two signals will exist; it does not predict whether
or not they will overlapwithin regions of the ACC. The current evidence
of regional distinctions within the ACC suggests that these two signals
may not only existwithin ACC but also be spatially distinct. For example,
several recent studies have outlined distinct subregions of the ACC
based on probabilistic connectivity (Beckmann et al., 2009), dynamic
causal modeling (Fan et al., 2008), motor representations (Amiez and
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Fig. 1. A general conceptual illustration of the Predicted Response Outcome (PRO)model of anterior cingulate cortex. Left: The prediction units (red) generate a timed prediction of what
outcomes are expected, with what probability, and when. There are four prediction units (ellipses) shown here for illustration purposes, corresponding to four predicted outcomes,
although the number of prediction units will vary in general with different tasks so that there is one prediction unit for each corresponding possible outcome. Lower left: Greater prob-
abilities (y-axis) are associated with greater prediction activity, which peaks at the time when the outcome is expected due to the temporal discounting of the probability. Middle: The
evaluation units compute negative surprise, i.e. they detect when an expected outcome fails to occur. This is simply the difference between the predicted and actual outcomes and repre-
sents how improbable the negative surprise was. The green arc from evaluation to prediction indicates that prediction errors from the evaluation units train and update the prediction
signals. Lower middle: Events that are predicted with a high probability yield greater surprise signals (expectation unmet) when they fail to occur, but a weaker surprise signal when
they do occur (expectation met). Right: Outcomes occur (i.e. outcome value rises rapidly and transiently to 1) or fail to occur (i.e. outcome value is 0) at specific times.
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Petrides, 2012), neural deficits in schizophrenia (Krawitz et al., 2011),
and experimental paradigms incorporating error, conflict, and task-
switching effects into a single design (Nee et al., 2011), highlighting
the anatomical and functional heterogeneity of the ACC. The current
study was designed to test whether a model-based analysis could iden-
tify these prediction and outcome processes in the ACC, and if so,
whether these processes are spatially distinct or overlapping.

Here we find that distinct regions of the ACC are involved in gener-
ating prediction and outcome (i.e. prediction error) signals, in line
with the PRO model. To investigate this, we use a task which paramet-
rically manipulates both the number of predictions subjects make and
the number of surprising outcomes.Wepresent the same behavioral se-
quence to both the PRO model and human subjects, and we derive
model-based regressors from the PRO model. These are entered as co-
variates in the fMRI analysis to identify regions that correspond to the
theoretical components of the PRO model.

Materials and methods

The Institutional Review Board of Indiana University approved the
experimental procedures reported here.

Participants

Data from 14 right-handed participants (9 female) were collected
(mean age = 24.93, SD = 2.92). Participants reported no history of
psychiatric or neurological disorder, and reported no current use of psy-
choactive medications. Participants were compensated $25/h for their
time, in addition to a performance bonus based onhowmany correct re-
sponses they made during the task. Participants were trained on the
task on a computer outside of the scanner until they gave verbal confir-
mation that they understood the task.
Procedure

fMRI paradigm
The task was designed to manipulate the neural activity related to

predicting and evaluating outcomes. To achieve this, we manipulated
the number of outcomes subjects had to predict as consequences of
their actions, as well as the degree to which the actual outcomes dif-
fered from the predicted outcomes. Subjects were instructed to make
two choices regarding a pair of options, and then they were required
to predict the outcomes of the choices. Critically, for some trials, partic-
ipants were required to maintain predictions about each outcome from
their pair of choices (Predict2 condition), while on other trials, partici-
pants were required to maintain a prediction about only one outcome
from their pair of choices (Predict1 condition). These conditions were
later contrasted to test for an effect of an increasing number of main-
tained predictions. Thereafter, the subjects were informed of the out-
comes of their choices. Outcomes could violate zero, one, or two
predictions thereby providing a parametric effect of expectancy viola-
tion. Each participant underwent a behavioral session outside of the
scanner consisting of 100 trials. If the participant felt that they under-
stood the task and consented to undergo the scanning paradigm at a
later time, eachparticipant completed another 50 trials immediately be-
fore scanning to refresh their memory of the task. During scanning each
participant underwent 5 runs of 100 trials each, with each run lasting 8
min and 40 s.

The task consisted of three phases: A choice phase, a prediction
phase, and an outcome phase (see Fig. 2). During the choice phase, par-
ticipants were presented with two rows of two boxes, forming a pair of
boxes for each row. The two rows of boxes were separated by a white
horizontal line. A question mark (“?”) placed in between a row of
boxes prompted subjects to choose one box from the row. Choices
were to be based on prior outcomes (described below). After choosing
between boxes in one row, the question mark moved to the other



EVALUATION
regressor

PREDICTION
regressor

a

b

Fig. 2. Task design. Dissociation of decision, prediction, and outcome effects. In each trial, the question mark between the two upper or two lower boxes prompted a choice between the
adjacent boxes. After a delay to separate out the decision and motor-related activities, subjects were re-presented with their choices, at which point they could predict the impending
feedback to be delivered in the outcome phase of the trial. Outcomes (“*” and “0”) shown later in the chosen boxes indicated that subjects should choose the same box again on the
next trial (stay) or, less commonly, choose a different box on the next trial (switch). (a) In the Predict2 condition, participants made a series of two choices and later received outcome
feedback for each choice. During the prediction phase of the task, participants could predict the impending outcome(s). (b) In the Predict1 condition, participants also made two choices,
but they knew that theywould receive only a single outcome cue. No feedbackwas given for boxes containing an “X”. Instead, participants were told to repeat their previous choice in the
next trial. Hence, there was only a single outcome to predict and evaluate in the Predict1 condition. Overall, the task affords distinct activity estimates of decisions, of predicting 1 vs. 2
outcomes, and of receiving 0, 1, or 2 rare switch feedback cues. The actual stimuli were shown to subjects with the colors inverted, i.e. white stimuli on black background.
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row. The placement of the first prompt (top or bottom) was randomly
counterbalanced across trials.

During the choice phase, participants chose one box from each row.
In the Predict2 condition, all boxes contained a question mark (“?”)
which informed the subject that a chosen box would yield an outcome
cue (described below). In the Predict1 condition, one of the rows
contained boxes with “Xs”, which indicated that the chosen box
would not yield an outcome. The other row of boxes contained question
marks and thus yielded outcomes. As a result, in the Predict2 condition,
subjects made two choices that yielded outcomes, while in the Predict1
condition, subjects made two choices, only one of which yielded an out-
come. Outcome cues informed subjects whether to choose that row's
box again on the next trial (i.e., a “stay” cue), or to choose the other
box in that row on the next trial (i.e., a “switch” cue). Hence, the results
of outcomes had to be maintained in order to inform future choices.
After the participants made their choices, they were presented with
their choices for 1000ms, followed by a fixation cross of a jittered dura-
tion, before beginning the prediction phase.

During the prediction phase, participants were re-presented with
their choices. This phase signaled to the subject that outcomes would
soon be presented and provided a cue for the prediction of those out-
comes. Hence, the prediction phase was used to model prediction.
Although prediction of outcomes may begin immediately after choices
are made, because of the prediction phase's closer temporal proximity
to the actual outcome received by the participants, the PRO model ex-
pects prediction-related cells to ramp up during the prediction phase
(Alexander and Brown, 2011), a phenomenon that has also been ob-
served empirically (Amador et al., 2000; Hayden et al., 2009; Shidara
and Richmond, 2002). Furthermore, this was designated as the predic-
tion phase because it was dissociated from themotor activity preceding
it. In the Predict2 condition, both boxes had question marks in the cen-
ter, signaling that therewould be two outcome cues, and that the partic-
ipant shouldmaintain two separate outcomepredictions. In the Predict1
condition, only one box had a question mark in the center while the
other box had an “X” in the center, signaling that there would be only
one outcome cue and that the participant should therefore maintain
one outcome prediction. The prediction phase lasted for a jittered dura-
tion up to 7500ms, andwas followed by the outcome phase. The condi-
tion of predicting two outcomes instead of one outcome was not
confounded with working memory load, because even in the Predict1
condition, subjects had to remember the location of the unpredicted
outcome in order to choose it correctly in subsequent trials.

Outcomes of the participants' choices were revealed in the outcome
phase. In the Predict2 condition, both of the chosen boxes revealed an
outcome cue. In the Predict1 condition, only one of the chosen boxes re-
vealed an outcome cue. Subjects were instructed that in the Predict1
condition, the box with the “X” in the center would not reveal an out-
come cue. Subjects were instructed that the outcome of their choices
would inform what decision to make on the next trial. Outcomes in-
formed subjects whether to choose the same box as the current trial
(stay) or choose the other box (switch). In this way, subjects were mo-
tivated to attend to the feedback and update their choices accordingly in
subsequent trials. Stay and switch cues were denoted by “*” and “0”
with stay/switchmappings counter-balanced across subjects. If subjects
performed the task correctly, they would expect to find a stay cue most
of the time (p = 0.6) in all chosen boxes, and in at least one box if two
outcomes were predicted (p = 0.8). As a result, we expected that
participants would predict a stay cue and that a switch cue would be a
violation of that prediction.

Subjects were told that they would receive a reward of $0.05 on
every trial if they correctly followed the outcome cue (either switching
their response or making the same response on the next trial), and that
they would not receive any reward if they failed to follow the outcome
cue. This dissociation of receiving either a switch or stay cue and earning
reward ensured that the observed effects were not confoundedwith re-
ward anticipation or error likelihood.
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Feedback provided information for what options to choose on the
next trial. Of particular interest was the phase following the choice
phase. During this prediction phase, subjects maintained predictions
about the outcome of their choice(s), affording the assessment of
prediction-related neural activation. The task was designed to separate
these phases of prediction and evaluation so that BOLD responses to
each could be estimated independently.

Control paradigm
Thirteen (13) of the participants also underwent a control run before

performing the experimental task (one participant failed to complete
the control run due to technical issues). During this run, participants
were presented with the different combinations of box locations as
they would see during the prediction phase of the experiment (see
Fig. 2). These were the only stimuli presented during the control
block. The presentations of the boxes were separated by a jittered inter-
val with a similar distribution to the jitters during the actual experi-
ment. Participants were instructed to attend to the boxes as they
normally would during the experiment and to remain focused. In con-
trast with the experimental condition described above, they were not
otherwise required to respond, and participants were instructed not
to form predictions as they would in the experimental task because
the computer automatically made choices for the subjects.

The purpose of this control run was to determine whether brain ac-
tivation for the contrast of predicting two outcomes vs. predicting one
outcome (see imaging results below) could be explained by visual, eye
movement, or attention factors instead of monitoring for multiple
action outcomes.

fMRI analysis

Image acquisition and preprocessing
The experiment was conducted with a 3 Tesla Siemens Trio scanner

using a 32-channel head coil. Foam padding was inserted around the
sides of the head to increase participant comfort and reduce head mo-
tion. Imaging datawas acquired at a 30° angle from the anterior commis-
sure–posterior commissure line in order to maximize signal-to-noise
ratio in the orbital and ventral regions of the brain (Deichmann et al.,
2003). Functional T2* weighted images were acquired using a gradient
echo planar imaging sequence [30 × 3.8 mm interleaved slices; TE =
25 ms; TR = 2000 ms; 64 × 64 voxel matrix; 220 × 220 mm field of
view]. For the experimental condition, five runs of data were collected
with 240 functional scans each. For the control condition, one run of
data was collected with 145 functional scans. High resolution T1-
weighted images for anatomical data [256 × 256 voxelmatrix] were col-
lected at the end of each session.

SPM5 (Wellcome Department of Imaging Neuroscience, London,
UK; www.fil.ion.ucl.ac.uk/spm) was used for preprocessing and data
analysis. The functional data for each run for each participant was
slice-time corrected and realigned to each run's mean functional
image using a 6 degree-of-freedom rigid body spatial transformation.
The resulting images were then coregistered to the participant's struc-
tural image. The structural image was normalized to standardMontreal
Neurological Institute (MNI) space and the warps were applied to the
functional images. The functional images were then spatially smoothed
using an 8 mm Gaussian kernel.

Model-based analysis
The PRO model characterizes dACC/mPFC as a region involved with

learning to predict likely outcomes and signaling unexpected deviations
from predicted outcomes. Themodel learns temporally discounted esti-
mates of the likelihood of possible outcomes using a temporal difference
(TD) learning algorithm (Sutton and Barto, 1990) that has been extend-
ed in the following ways. First, the PRO model learns predictions for
multiple, independent outcomes, regardless of their affective valence,
in contrast to TD learning which learns the aggregate reward value of
outcomes weighted by the frequency with which those outcomes are
observed. Second, the PROmodel generates a vector-valued error signal
in order to update model predictions regarding likely outcomes accord-
ing to the following equation:

δi;t ¼ Oi;tþ1 þ γPi;tþ1−Pi;t ð1Þ

where O is a vector reflecting the occurrence of outcomes i at time t+1,
P reflects outcome predictions, and γ is a discount factor (γ = 0.95).
Model predictions were computed as

Pi;t ¼
X

j

I j;tWi; j;t ð2Þ

where I is a vector of binary values reflecting the presence (1) or ab-
sence (0) of a particular input j at time t, andW is the matrix of weights
indicating the discounted estimate of the likelihood of an outcome i for
all inputs. Model weights are updated according to

Wi; j;t ¼ Wi; j;t þ αδi;t I j;t ð3Þ

whereα is a learning rate parameter (α=0.1) and I is an eligibility trace
computed as

I j;t ¼ I j;t þ 0:95I j;t : ð4Þ

In previously published simulations, the error signal δ was used to
dynamically adjust the rate at which new information (in the form of
unexpected deviations from expectations) was integrated into the
model to allocate top-down control of behavior, allowing the PRO
model to fit observed, aggregate behavioral data. For our current analy-
sis, our aim is different in that, rather than fitting behavioral data, we
seek to generate trial-by-trial predictions of ACC activity for individual
subjects using the sequence of outcomes observed by those subjects in
the course of the task. Accordingly, we simulate the PRO model during
the period in each trial following the presentation of the predict cue
and terminating following feedback. There were two model inputs
used during simulations, corresponding with cues given to the subject
instructing them to predict the outcome of the top or bottom set of
boxes, while four possible outcomes were model, corresponding with
feedback to the subject indicating that they should stay or switch for
the top and bottom sets.

Four regressors and two parametric modulators were used in GLMs
for our model-based analyses. Two regressors modeled left vs. right but-
ton presses, as described above. A third regressor, PREDICTION, was
modeled as a series of impulse functions at each TR in the interval from
the onset of the prediction cue to the delivery of feedback. Finally, the
EVALUATION regressor was modeled as an impulse function at the
time feedback was delivered. In addition, model-based predictions of
neural activity derived from simulations of the PRO model were used
to create parametrically modulated PREDICTION and EVALUATION re-
gressors. Participants who committed any errors (N= 8) had two addi-
tional regressors included in their analysis— one for the prediction phase
on error trials, and one for the outcome phase on error trials. Note that
the capitalized words “PREDICTION” and “EVALUATION” refer to differ-
ent periods within a trial during which subjects will likely be engaging
in, respectively, predicting likely outcomes and evaluating observed out-
comes. Also, the PREDICTION and EVALUATION regressors are paramet-
rically modulated by the PRO model output, as described below.

Parametric modulators for our model-based analysis were derived
from simulations of the PROmodel usingparameters thatwere identical
to those published previously (Alexander and Brown, 2011), with the
exception that each model iteration was interpreted as lasting 100 ms
(i.e., each TR corresponded to 20 model iterations). The reason for this
change from the original PRO model (Alexander and Brown, 2011)
was to allow the model to converge on appropriate predictions given

http://www.fil.ion.ucl.ac.uk/spm
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the limited amount of training data (see below). The model was simu-
lated only for the PREDICTION and EVALUATION phases of each trial.
Input to the model consisted of two stimuli, corresponding to task
cues indicating that the subject would receive feedback related to the
top or bottom boxes as described in fMRI paradigm section. A total of
four possible outcomes were modeled: Top/switch, top/stay, bottom/
switch and bottom/stay.

In order to generate parametric modulators for trial-by-trial activity
in the behavioral task for a single subject, the PRO model was initially
trained on a randomly selected subset of 50 trials (out of 100) that the
subject had experienced during scanning. During the training period,
weights in the model representing outcome predictions were updated
to reflect the model's estimation of the likelihood of observing specific
outcomes (see Fig. 1 for a conceptual framework of this process). The
intended purpose of the training phasewas to faithfully replicate the cir-
cumstances of our experimental setup in which subjects completed a
control run prior to scanning. Following this initial training phase, the
model, using the prediction weights obtained during training, was pre-
sentedwith the complete sequence of 100 trials experienced by that sub-
ject during scanning in the order inwhich the subject experienced them.
During this sequence, all model learning rules remained in effect. Model
activity was recorded on each 100 ms simulation iteration, and was cal-
culated as the rectified value of current, learned predictions of likely out-
comes minus actual outcomes, i.e., negative surprise (Alexander and
Brown, 2011), summed over all outcome predictions according to the
following equation:

Activityt ¼
X

i
⌊ PredictedOutcomei;t−ActualOutcomei;t⌋

þ ð5Þ

where t is the current model iteration, and the superscript “+” indicates
positive rectification, i.e. that negative values are evaluated as zero. Note
that Eq. (5) is used to compute model activity for both PREDICTION and
EVALUATION parametricmodulators in theGLM. In the current analyses,
we donotmodel the complement of negative surprise (positive surprise:
observed outcomes minus learned predictions) for two reasons. First, a
wide range of activity observed in dACC/mPFC has been accounted for
using only the notion of negative surprise (Alexander and Brown,
2011); incorporating only the negative component of surprise, therefore,
is a more direct test of one of the central claims of the PRO model.
Second, positive and negative surprises tend to be directly (though not
perfectly) correlated; the absence of a predicted stimulus is often accom-
panied by the occurrence of an unpredicted stimulus. In the current
study, outcomes are binary and are always presented, and so the values
obtained from modeling only negative surprise vs. the combination of
negative and positive surprise are correlated perfectly. The value of a
Fig. 3.Regions of the CCZ/ACC showing increased activation in response to prediction- and outc
old of p b 0.05. The RCZp and CGROIs were taken fromNee et al. (2011), while the CCZ ROIwas
green: Outcome-related effects.
Predicted Outcome is a temporally discounted function reflecting both
the learned likelihood of a particular outcome i occurring as well as the
amount of time until that outcome is expected to occur. On each model
iteration, the Predicted Outcome is updated to reflect the current time-
discounted predicted likelihood of a predicted outcome occurring. The
Actual Outcome is binary, taking the value of 1 on the model iteration t
in which a particular outcome is observed, and 0 at all other times.
Eq. (5) was used to derive parametric modulators for both the
PREDICTION and EVALUATION regressors. The parametric modulator
for the PREDICTION regressor was calculated for each two second TR as
the average model activity of the 20 iterations starting from the TR
onset and ending at the iteration immediately preceding the onset of
the next TR. The number of TRs per trial varied due to jitter between
the onsets of the PREDICTION phase and EVALUATION phase, ranging
from3 to 7. Itmay seemcounter-intuitive that Eq. (5) can be used to gen-
erate both the PREDICTION and EVALUATION signals, but note that dur-
ing the PREDICTION interval (prior to the occurrence of an outcome), the
value for the Actual Outcome is 0 for all i, indicating that an outcome has
not yet occurred.Model activity during this period therefore reflects only
the time-discounted outcome prediction. In this way, Eq. (5) reflects the
PREDICTION signal prior to the outcome, and the EVALUATION signal af-
terward. The parametric modulator for the EVALUATION phase was cal-
culated as the average activity from Eq. (5) during the 20 iterations
following the delivery of feedback to themodel. The procedure described
above was conducted twice for each subject's data, once in order to
generate PREDICTION modulators, and once in order to generate
EVALUATION modulators. The independent simulations were identical
with the exception that, for the EVALUATION simulations, the time inter-
val between the beginning of the prediction phase and the delivery
of feedback was held constant, while simulations used to generate
PREDICTION modulators simulated the jittered interval between the
onset of the PREDICTION phase and the EVALUATION phase. The ratio-
nale for this is that, due to the procedure used to generate jitter intervals,
trials with especially long intervals were severely undersampled due to
the relative infrequency of long jitter intervals, resulting in a failure of
the model to converge on appropriate predictions regarding outcomes
at those times. Additional analysis using EVALUATION modulators gen-
erated using simulations incorporating jittered intervals showed effects
similar to those reported below, albeit with a substantial loss in power
due to the unreliability of model predictions regarding outcomes follow-
ing prolonged jitter intervals.

Unless otherwise stated, all results were thresholded at the voxel-
level at p b 0.005. Cluster extent provided corrections for multiple com-
parisons (p b 0.05 corrected) through AlphaSim (http://afni.nimh.gov/
afni/). Based on AlphaSim, whole-brain analyses included a 144 voxel
extent criterion.
ome-related effects as predicted by the PROmodel, presented at a cluster corrected thresh-
created from coordinates reported in Drabant et al. (2011). Red: Prediction-related effects;

http://afni.nimh.gov/afni/
http://afni.nimh.gov/afni/
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Results

Behavioral results

All participants performed the task at a satisfactory level (≥95% cor-
rect responses per participant, collapsed across correct switches and cor-
rect stays). When errors did occur, there was no significant difference
between incorrect switches and incorrect stays (t(13) = 0.849, P =
0.404). However, participants did commit significantly more errors
in the Predict1 condition compared to the Predict2 condition (t(13) =
2.09, P b 0.05). Participants were verbally debriefed after the task, and
each participant reported that they had understood the task.

Model-based results

The PROmodel postulates that the mPFC/ACC generates predictions
of outcomes, which are then compared against actual outcomes to pro-
duce a discrepancy signal that drives future learning (Fig. 1). Simula-
tions of the PRO model indicate that the mPFC/ACC should be
sensitive to the number of predictions, as well as the degree to which
predictions are violated. Here, we explore these effects.

Effect of prediction
In order to determine whether the mPFC/ACC is sensitive to the

number of predictions as anticipated by the PRO model, we regressed
neural activity onto the model-based PREDICTION regressors generated
by the PRO model, and entered these into the GLM as parametric mod-
ulators. A one-sample t-test was then carried out on these (mean-cen-
tered) parametric modulators, comparing the effect to a population
mean of zero. Confirming model predictions, significant loading on the
model PREDICTION signal was found in the left anterior portion of
the ACC (MNI −6, 26, 26; k = 484 voxels; peak voxel z-value = 3.49;
P b 0.001), as well as the caudal cingulate zone (CCZ; MNI −6, −26,
40; k = 12077 voxels; peak voxel z-value = 4.66; P b 0.001), as
shown in Fig. 3. In addition to the ACC, a network of other regions also
showed activity consistent with outcome predictions, including the bi-
lateral insula, which has been implicated in outcome prediction
(Preuschoff et al., 2008); (Table 1).

Effect of outcome
Similarly, in order to test which cortical areas are associated with vi-

olations of predictions, we tested for areas loading onto the model-
based EVALUATION (mean-centered) parametricallymodulated regres-
sors generated by the PRO model. Signification loading on the model
EVALUATION signal was found in the dorsal ACC (MNI 2, 18, 48; k =
671 voxels; peak voxel z-value = 4.17; P b 0.001, cluster corrected).
This region was situated in-between areas sensitive to predictions de-
scribed above, but did not overlap with them (see Fig. 3). Other regions
loading on the EVALUATION regressors included visual cortex, bilateral
insula, bilateral middle frontal gyrus, and left superior frontal sulcus
(Table 2). These areas may carry out separate evaluations of prediction
error, as has been shown, for example, in the insula (Preuschoff et al.,
2008) and visual cortex (Egner et al., 2010).
Table 1
Activation clusters loading onto the PREDICTION parametric modulators generated by the PRO

Brain region (TD) X Y Z

(MNI)

Effect of model PREDICTION regressor
Left supramarginal gyrus −56 −24 42
Caudal cingulate zone* −6 −26 40
Left thalamus −14 −32 0
Right anterior insula 34 32 −12
Left insula −48 22 2
Left rostral ACC −6 26 26
Left inferior parietal lobe −46 −60 10
Comparison of prediction and surprise effects
It is also possible that the various dorsal ACC regions were simply

more active during different phases of the trial asmain effects, indepen-
dent of any parametric modulation by model-based signals. To explore
this possibility, an additional contrast was carried out on the un-
modulated PREDICTION and EVALUATION regressors to test the overlap
of main effects with the parametric modulators. No overlap was
found between the un-modulated, main effect of activity during the
PREDICTION phase of the trial vs. the parametric modulator for PREDIC-
TION. For the un-modulated, main effect of EVALUATION, overlap was
found with the parametric modulator in the dorsal anterior cingulate
cortex with the parametric effect of EVALUATION (significant effect
of un-modulated EVALUATION regressor, MNI −2, 6, 48; k =
3854 voxels; peak voxel z-value = 5.47; P b 0.001). This overlap is ex-
pected because multiple predictions are made in a given trial, so one of
them is likely to be violated, which would generally elevate activity in
regions that compute prediction error and specifically negative surprise.
Nevertheless, the parametrically modulated regressors were mean-
centered and orthogonal to the corresponding un-modulated regres-
sors, so logically it is possible to see a main effect but not a loading on
the parametric modulator in a given region, and vice versa. The results
overall suggest some main effect of activation in the dorsal ACC during
the EVALUATION phase, but this is not confounded with the distinct
loading on the PREDICTION and EVALUATION parametrically modulat-
ed regressors.

To test furthermore whether specific brain areas weremore respon-
sive overall to the un-modulated PREDICTION regressor as opposed to
the un-modulated EVALUATION regressor, a paired t-test was carried
out to compare beta estimates for EVALUATION relative to PREDICTION.
This comparison revealed significantly greater activity during the
EVALUATION phase in the dorsal ACC (MNI 4, 12, 46; k = 4133 voxels;
peak voxel z-value= 5.29; P b 0.001), consistent with previous results
showing generally strong activity in this region during outcome relative
to prediction (Brown, 2009; Jahn et al., 2011). The opposite contrast of
PREDICTION minus EVALUATION showed activation mainly in white
matter regions.

Dissociation of prediction and surprise effects
In order to test whether each of the ACC regions were preferentially

activated to only one of the contrasts and not the other, unbiased ROIs
were created in order to test for a significant ROI × contrast interaction
(Nieuwenhuis et al., 2011). Two spherical ROIs (5 mm each) were
placed in distinct ACC subregions outlined by Nee et al. (2011) to de-
marcate the structural and functional heterogeneity of the ACCwithout
being near enough to have parameter estimates from each ROI unduly
affected by smoothing (Fig. 3). The first ROI was placed in the posterior
rostral cingulate zone (RCZp; MNI center 0, 10, 46). The second spheri-
cal ROI was placed in the rostral cingulate gyrus (CG; MNI center 0, 38,
10). An additional 5 mm spherical ROI was placed in the caudal cingu-
late zone (CCZ;MNI center, 0,−10, 39), in order to extend the coverage
of our analysis to the posterior regions of the cingulate. The location of
this ROI was taken from peak voxel coordinates for a contrast of strong
vs. medium anticipation (Drabant et al., 2011). These three regions
model. See Results section. An asterisk (“*”) denotes a sub-cluster of the above cluster.

Z-score Cluster corrected p-value Cluster size

5.75 b0.001 12,077
4.66 b0.001
4.66 b0.001 399
4.58 b0.001 929
3.83 b0.001 950
3.49 b0.001 484
3.42 b0.05 173



Table 2
Activation clusters loading onto the EVALUATION parametric modulators generated by the PRO model. See Results section.

Brain region (TD) X Y Z Z-score Cluster corrected p-value Cluster size

(MNI)

Effect of model EVALUATION regressor
Visual cortex 6 −64 0 4.85 b0.001 2509
Left superior frontal sulcus −26 0 52 4.36 b0.05 202
Dorsal ACC 2 18 48 4.17 b0.001 671
Right hippocampus 18 −26 −8 4.12 b0.001 531
Left anterior insula −32 22 −6 4.08 b0.01 271
Right frontal middle gyrus 46 6 30 3.99 b0.01 311
Left frontal middle gyrus −42 −2 24 3.96 b0.05 189
Right thalamus 10 −20 14 3.92 b0.01 288
Right anterior insula 36 18 2 3.59 b0.05 168
Left parietal inferior lobe −48 −38 38 3.24 b0.05 149
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were selected to serve as unbiased ROIs corresponding to known func-
tional and anatomical subdivisions within the ACC (Fan et al., 2008;
Paus, 2001).

A significant ROI × condition interaction was found (F(2, 26) =
3.75, P b 0.05), driven by greater effects for EVALUATION than
PREDICTION in region RCZp, and the reverse pattern (greater effects
for PREDICTION than EVALUATION) in both CG and CCZ (Fig. 3). Within
each ROI, paired-t-tests were conducted to test for significant differ-
ences between the effects of PREDICTION and EVALUATION. Bonferroni
correction for multiple comparisons was used when comparing mean
differences, resulting in a corrected critical t-value of 2.75. Within
RCZp there was a significant effect of EVALUATION (t(13) = 3.54,
P b 0.01) and a non-significant result of PREDICTION (t(13) = 0.34,
P N 0.05), with a paired t-test between the conditions showing no sig-
nificant difference (t(13) = 2.32, P b 0.05). The opposite pattern was
found within CCZ with a significant effect of PREDICTION greater than
EVALUATION (t(13) = 3.13, P b 0.01), driven by a significant effect of
PREDICTION (t(13) = 4.30, P b 0.01) and a non-significant result of
EVALUATION (t(13)= 0.45, P N 0.05).Within CG, therewas a trend to-
wards a significant effect of PREDICTION (t(13) = 2.37, P b 0.1) but no
effect of EVALUATION (t(13)= 0.76, P N 0.05), although a paired t-test
revealed no significant difference between the parameter estimates
(t(13) = 1.31, P N 0.05). Overall, these results lend support to the pro-
posal that distinct sub-regions of the ACC are involved in prediction and
outcome calculations, which is consistent with the PRO model.
Control analysis

A control run was presented to thirteen subjects, in which the same
prediction phase imageswere presented to the subjects, but no responses
Fig. 4. Regions of the posterior cingulate (CCZ) and anterior cingulate (CG) showing increas
(Predict1). Within these independent ROIs, parameter estimates were extracted for the contro
Predict2–Predict1 contrast were significantly greater than for the control contrast. The control c
were made and no predictions formed. Within the independent ROIs of
CCZ and CG, parameter estimates were extracted for the contrast
Predict2–Predict1 of the control run, and compared to parameter esti-
mates for Predict2–Predict1 of the experimental runs. Within CCZ, the
Predict2–Predict1 contrast for the experimental runs was significantly
greater than zero (t(12) = 3.49, P b 0.01), while the same contrast for
the control run was not significantly greater than zero (t(12) = −0.29,
P= 0.77). For regionCG, on the other hand, the Predict2–Predict1 contrast
was significantly greater than zero (t(12) = 3.27, P b 0.01), while
prediction-related activity for the control run was significantly less
than zero (t(12) = −3.59, P b 0.01; Fig. 4). These results suggest that
prediction-related activity was not solely driven by oculomotor or
attention-related processes.
Discussion

Model-based regressors reveal anatomically distinct areas of ACC in
prediction and outcome

Using model-based regressors generated by the PRO model, we
found that prediction-related signals loaded onto posterior and
perigenual portions of the ACC. This prediction effect did not overlap
with a medial supracallosal region of the ACC that showed a comple-
mentary effect of outcome evaluation (Fig. 3). The finding of distinct
prediction and evaluation regions within mPFC is consistent with the
corresponding theoretically distinct prediction and evaluation mecha-
nisms of the PRO model. Previous studies have shown anticipatory sig-
nals in ACC (Aarts et al., 2008; Sohn et al., 2007), but it has been unclear
whether these areas of the ACC were the same as those that generate
outcome-related signals (Dehaene et al., 1994; Gehring et al., 1993;
ed activation for predicting 2 outcomes (Predict2) as opposed to predicting 1 outcome
l condition. A paired t-test in both regions revealed that the parameter estimates for the
ondition did not pass any corrected thresholds in a whole-brain analysis.
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Holroyd and Coles, 2002). Here, we found that the regions in mPFC
encoding prediction signals are distinct from other regions of the
mPFC that encode outcomes.

Other studies have suggested regional dissociations within the ACC
in cognitive tasks, and our findings account for earlier regional dissocia-
tions in the framework of the PROmodel. Behrens et al. (2007) reported
distinct social vs. reward learning volatility effects in the anterior cingu-
late gyrus and sulcus, respectively. We previously demonstrated that
volatility effects could be understood as reflecting an outcome evalua-
tion signal in the PROmodel (Alexander and Brown, 2011). The current
results show that the region with EVALUATION effects includes both of
the regions where reward and social volatility effects have been report-
ed (Behrens et al., 2007). Also, three distinct cingulatemotor areas have
recently been reported in humans (Amiez and Petrides, 2012). Interest-
ingly, the three human cingulate motor areas show substantial overlap
with the corresponding three PREDICTION and EVALUATION regions
found here in the ACC. The EVALUATION region in particular coincides
with a region that has topographic connections with widespread re-
gions of lateral prefrontal cortex (Beckmann et al., 2009; Blumenfeld
et al., 2012; Taren et al., 2011).

Our results challenge other theories of ACC function, in particular
conflict monitoring theory (Botvinick et al., 2001). Conflict monitoring
theory posits that mutually incompatible response processes can ac-
count for greater activation within ACC. However, it is unclear how
the conflict model could account for the observed PREDICTION regres-
sor effects, because the time period of prediction is separate from the ac-
tion periods when conflict might be present. Similarly, it is unclear how
the conflict model could account for the EVALUATION regressor effects,
as again there is no overt action associated with learning the outcome.

In contrast, the present results add to a growing bodyof findings that
are consistent with the ACC as a region that predicts and evaluates out-
comes, as exemplified in the PRO model. We have previously demon-
strated that apparent conflict effects in ACC can be found even when
the task is manipulated such that the responses are not in conflict
with each other, although our previous design did not distinguish pre-
diction vs. outcome signals (Brown, 2009). Nevertheless, such data can-
not be accommodated by the conflict monitoring model, but according
to the PRO model, apparent conflict effects may instead result from a
prediction of multiple possible responses on conflict trials (i.e. both cor-
rect and incorrect outcomes are possible with incongruent trials), vs. a
single predicted outcome (i.e. correct on congruent trials). The present
results now suggest that such a prediction signal may be presented in
the posterior and perigenual ACC. Likewise, we and others have found
that error effects (Gehring et al., 1993), which have been argued to rep-
resent conflict (Yeung et al., 2004), may instead represent surprise. In
particular, error effects reversewhen errors aremore common than cor-
rect trials (Ferdinand et al., 2012; Jessup et al., 2010; Oliveira et al.,
2007). The PRO model simulates both error and surprising correct out-
come effects in a single EVALUATION regressor (Alexander and Brown,
2011), and the present results now suggest that such a signal is repre-
sented specifically in the mid-dorsal cingulate.

The results are consistent with a growing body of literature suggest-
ing that ACC is involved in representing action values (Croxson et al.,
2009; Gläscher et al., 2009; Hayden et al., 2011; Kennerley et al.,
2006). In addition, these results are consistent with other neuroimaging
and modeling work of the mPFC, including Bayesian modeling of abso-
lute prediction error between expectation and outcome phases (Ide
et al., 2013), Bayesian modeling of hierarchical prediction errors
(Iglesias et al., 2013), andupdating one's prior beliefs about the environ-
ment in order to form more accurate predictions about response-
outcome associations (O'Reilly et al., 2013). Notably, the prediction
and outcome effects discussed in these studies show similar patterns
of brain activity as shown in the current paper. Furthermore, the results
provide empirical support for the theoretical prediction of two
interacting prediction and evaluation components that subserve perfor-
mance monitoring: predicted action values are represented in a
network of regions including the ACC, and these in turn provide a
basis against which other regions of the ACC evaluate ongoing behavior.
Actions that fail to yield an expected level of reward at the time of out-
come may be evaluated within the ACC as requiring corrective action,
such as a change in strategy (Hayden et al., 2011; Kennerley et al.,
2006) or an impetus to forage in order to find a more valuable action
(Kolling et al., 2012).

One potential issue with our model-based analysis is that outcomes
presented at especially long jitter intervals are undersampled in our de-
sign, resulting in a failure of the PRO model to converge on appropriate
predictions for outcomes presented following infrequent long intervals.
In order to address this issue, we simulated the PRO model twice for
each subject, once in order to generate parametric modulators for the
PREDICTION regressor during which jittered intervals were simulated
as they were experienced by the subject, and once in order to generate
EVALUATION modulators, during which intervals were set to the most
common jitter interval (60 model iterations). This approach ensured
that model predictions at the time of feedback converged on the likeli-
hood of observing the various outcomes associated with the task.
Other possible strategies for addressing this issue are possible. One
such strategy for generating parametric modulators might involve
more extensive training of the model on synthetic data in order to re-
solve the problem with undersampling long-jitter trials in order to
allow the model to converge on appropriate predictions. An additional
option would be to model only those trials in our GLM with the most
frequently observed jitter intervals. Finally, in order to prevent
undersampling of specific intervals during the experiment, jitter inter-
vals might be sampled from a uniform distribution of possible jitter in-
tervals (rather than an exponential distribution), although this
approach would impact overall efficiency of the experimental design
(Dale, 1999).

Ruling out alternative explanations

One potential explanation for the prediction results is that the dual-
task nature of making two predictions could drive ACC activity. A previ-
ous study of dual-task performance found activation in perigenual ACC
(Dreher and Grafman, 2003), and that region overlaps with the region
found here in response to prediction. However, this previous study
used a block design that did not distinguish response, prediction, and
outcome feedback conditions as we have done here. Our results show
that the ACC region with multiple outcome prediction effects is specifi-
cally active during the prediction phase of a trial as distinct from the re-
sponse or outcome phase. Thus, is it likely that if the same region is
active during dual-task performance, such activity may reflect predic-
tions of the outcomes associated with performing each of the two
tasks rather than task responses or feedback evaluation (Brown, 2009;
Jahn et al., 2011).

One particularly interesting result of the EVALUATION analysis was a
significant cluster of activation in the visual cortex, in addition to the ob-
served dorsal ACC cluster. Surprising outcomesmay call for increased at-
tention to inputs reflected here in greater visual activity. By increasing
the activity of inputs, the cognitive systemmay be better suited to gather
contextual information that can account for discrepancies between ex-
pectations and outcomes thereby minimizing future prediction errors.
While increased attention may explain both visual and ACC activation,
it is unclear how such an account could explain the various effects as-
cribed to the ACC that are predicted by the PROmodel. Instead, we sug-
gest that distinct mechanisms govern the ACC and visual activations.

Another set of confounding factors to be ruled out is the potential ef-
fect of errors or error likelihood. In the Predict2 condition, there were
two opportunities to fail at finding the stay cue, which in principle
might lead to greater error likelihood effects in the Predict2 vs. Predict1
conditions, as well as potentially greater error effects. However, we de-
signed the task to dissociate errors vs. the absence of one or both stay
cues. Subjects were given a monetary incentive to perform the task
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correctly. Crucially, the reward was given for following the win-stay/
lose-shift strategy, and this contingency was explained explicitly to
the participants as part of the task instructions. The reward available
did not differ between Predict1 vs. Predict2 trials, nor was the reward re-
duced if subjects received a switch cue, provided that they followed the
task rules. In this way, even though receiving a switch cue was unex-
pected, it was not to be considered an error provided that subjects
followed the task rules. Thus, the effects of one or two switch cues can
be attributed to surprise or switching, but not to errors in terms of
gaining reward. Furthermore, the error rateswere low overall, so the ef-
fects are not likely to be attributable to differences in error likelihood
across conditions. If anything, participants were more likely to commit
error in the Predict1 condition compared to the Predict2 condition,
which would argue against an interpretation of this effect in terms of
error likelihood. Thus, it is unlikely that the observed effects represent
error-related processes.

Although several other computational models of mPFC function
could be considered, the task design makes it difficult to carry out a
quantitative model comparison. As the current paradigm modeled
both prediction and outcome phases, it would not be a direct compari-
son to includemodels forwhichmodel behavior is undefined for predic-
tion (e.g., reinforcement learning; Holroyd and Coles, 2002), undefined
for outcome (e.g., error likelihood; Brown and Braver, 2005), or unde-
fined for both prediction and outcome (e.g., conflict monitoring or
time on task; Botvinick et al., 2004; Grinband et al., 2011). Furthermore,
amodel ofmPFC activity such as the reward value and predictionmodel
(RVPM; Silvetti et al., 2011) is too similar to the model used here to
serve as a viable alternative model.

Overall, it is unclear how existing theories other than the PROmodel
could account for the present results. Other proposed theories cast ACC
as computing error likelihood (Brown and Braver, 2005), volatility
(Behrens et al., 2007), time-on-task (Carp et al., 2010; Grinband et al.,
2011), differences between actual vs. intended responses (Scheffers
and Coles, 2000), differences between actual vs. intended outcomes
(Holroyd and Coles, 2002; Ito et al., 2003), and predicted action values
(Scheffers and Coles, 2000; Walton et al., 2004). The prediction effect
occurs at a time that is temporally dissociated from response processes,
so it is unlikely to involve response conflict. The interval between pre-
diction and outcome has the same distribution in the Predict1 and
Predict2 conditions, so it is unclear how a time-on-task account could
explain the prediction effect. Furthermore, the outcome events are
modeled separately from the prediction events and with a variable in-
terval between them, so the prediction and outcome events can be esti-
mated independently of each other. Lastly, the nature of the task
contingencies does not change throughout the course of the experi-
ment, so volatility differences are unlikely to play a role. To the best of
our knowledge, the PRO model is the only existing framework that
can account for the multiple outcome prediction effect found here. Fur-
thermore, we have recently shown that a computational simulation of
the PRO model can reproduce the various effects that have been cited
as evidence for all of these various theories of ACC function above
(Alexander and Brown, 2011), as well as generating the regressors
used to model the prediction and outcome effects identified here.
Thus, our results are consistentwith the PROmodel as a unifying theory
of ACC function.
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